Map & Tuple
一、映射(Map)
1.1 构造Map
// 初始化一个空 map
val scores01 = new HashMap[String, Int]
// 从指定的值初始化 Map(方式一)
val scores02 = Map("hadoop" -> 10, "spark" -> 20, "storm" -> 30)
// 从指定的值初始化 Map(方式二)
val scores03 = Map(("hadoop", 10), ("spark", 20), ("storm", 30))
采用上面方式得到的都是不可变 Map(immutable map),想要得到可变 Map(mutable map),则需要使用:
val scores04 = scala.collection.mutable.Map("hadoop" -> 10, "spark" -> 20, "storm" -> 30)
1.2 获取值
object ScalaApp extends App {
val scores = Map("hadoop" -> 10, "spark" -> 20, "storm" -> 30)
// 1.获取指定 key 对应的值
println(scores("hadoop"))
// 2. 如果对应的值不存在则使用默认值
println(scores.getOrElse("hadoop01", 100))
}
1.3 新增/修改/删除值
可变 Map 允许进行新增、修改、删除等操作。
object ScalaApp extends App {
val scores = scala.collection.mutable.Map("hadoop" -> 10, "spark" -> 20, "storm" -> 30)
// 1.如果 key 存在则更新
scores("hadoop") = 100
// 2.如果 key 不存在则新增
scores("flink") = 40
// 3.可以通过 += 来进行多个更新或新增操作
scores += ("spark" -> 200, "hive" -> 50)
// 4.可以通过 -= 来移除某个键和值
scores -= "storm"
for (elem <- scores) {println(elem)}
}
// 输出内容如下
(spark,200)
(hadoop,100)
(flink,40)
(hive,50)
不可变 Map 不允许进行新增、修改、删除等操作,但是允许由不可变 Map 产生新的 Map。
object ScalaApp extends App {
val scores = Map("hadoop" -> 10, "spark" -> 20, "storm" -> 30)
val newScores = scores + ("spark" -> 200, "hive" -> 50)
for (elem <- scores) {println(elem)}
}
// 输出内容如下
(hadoop,10)
(spark,200)
(storm,30)
(hive,50)
1.4 遍历Map
object ScalaApp extends App {
val scores = Map("hadoop" -> 10, "spark" -> 20, "storm" -> 30)
// 1. 遍历键
for (key <- scores.keys) { println(key) }
// 2. 遍历值
for (value <- scores.values) { println(value) }
// 3. 遍历键值对
for ((key, value) <- scores) { println(key + ":" + value) }
}
1.5 yield关键字
可以使用 yield
关键字从现有 Map 产生新的 Map。
object ScalaApp extends App {
val scores = Map("hadoop" -> 10, "spark" -> 20, "storm" -> 30)
// 1.将 scores 中所有的值扩大 10 倍
val newScore = for ((key, value) <- scores) yield (key, value * 10)
for (elem <- newScore) { println(elem) }
// 2.将键和值互相调换
val reversalScore: Map[Int, String] = for ((key, value) <- scores) yield (value, key)
for (elem <- reversalScore) { println(elem) }
}
// 输出
(hadoop,100)
(spark,200)
(storm,300)
(10,hadoop)
(20,spark)
(30,storm)
1.6 其他Map结构
在使用 Map 时候,如果不指定,默认使用的是 HashMap,如果想要使用 TreeMap
或者 LinkedHashMap
,则需要显式的指定。
object ScalaApp extends App {
// 1.使用 TreeMap,按照键的字典序进行排序
val scores01 = scala.collection.mutable.TreeMap("B" -> 20, "A" -> 10, "C" -> 30)
for (elem <- scores01) {println(elem)}
// 2.使用 LinkedHashMap,按照键值对的插入顺序进行排序
val scores02 = scala.collection.mutable.LinkedHashMap("B" -> 20, "A" -> 10, "C" -> 30)
for (elem <- scores02) {println(elem)}
}
// 输出
(A,10)
(B,20)
(C,30)
(B,20)
(A,10)
(C,30)
1.7 可选方法
object ScalaApp extends App {
val scores = scala.collection.mutable.TreeMap("B" -> 20, "A" -> 10, "C" -> 30)
// 1. 获取长度
println(scores.size)
// 2. 判断是否为空
println(scores.isEmpty)
// 3. 判断是否包含特定的 key
println(scores.contains("A"))
}
1.8 与Java互操作
import java.util
import scala.collection.{JavaConverters, mutable}
object ScalaApp extends App {
val scores = Map("hadoop" -> 10, "spark" -> 20, "storm" -> 30)
// scala map 转 java map
val javaMap: util.Map[String, Int] = JavaConverters.mapAsJavaMap(scores)
// java map 转 scala map
val scalaMap: mutable.Map[String, Int] = JavaConverters.mapAsScalaMap(javaMap)
for (elem <- scalaMap) {println(elem)}
}
二、元组(Tuple)
元组与数组类似,但是数组中所有的元素必须是同一种类型,而元组则可以包含不同类型的元素。
scala> val tuple=(1,3.24f,"scala")
tuple: (Int, Float, String) = (1,3.24,scala)
2.1 模式匹配
可以通过模式匹配来获取元组中的值并赋予对应的变量:
scala> val (a,b,c)=tuple
a: Int = 1
b: Float = 3.24
c: String = scala
如果某些位置不需要赋值,则可以使用下划线代替:
scala> val (a,_,_)=tuple
a: Int = 1
2.2 zip方法
object ScalaApp extends App {
val array01 = Array("hadoop", "spark", "storm")
val array02 = Array(10, 20, 30)
// 1.zip 方法得到的是多个 tuple 组成的数组
val tuples: Array[(String, Int)] = array01.zip(array02)
// 2.也可以在 zip 后调用 toMap 方法转换为 Map
val map: Map[String, Int] = array01.zip(array02).toMap
for (elem <- tuples) { println(elem) }
for (elem <- map) {println(elem)}
}
// 输出
(hadoop,10)
(spark,20)
(storm,30)
(hadoop,10)
(spark,20)
(storm,30)
参考资料
- Martin Odersky . Scala 编程 (第 3 版)[M] . 电子工业出版社 . 2018-1-1
- 凯.S.霍斯特曼 . 快学 Scala(第 2 版)[M] . 电子工业出版社 . 2017-7